Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Azure OpenAI API version support
- v1 Generally Available (GA) API now allows access to both GA and Preview operations. To learn more, see the API version lifecycle guide.
Installation
dotnet add package OpenAI
Authentication
A secure, keyless authentication approach is to use Microsoft Entra ID (formerly Azure Active Directory) via the Azure Identity library. To use the library:
dotnet add package Azure.Identity
Use the desired credential type from the library. For example, DefaultAzureCredential:
using Azure.Identity;
using OpenAI;
using OpenAI.Chat;
using System.ClientModel.Primitives;
#pragma warning disable OPENAI001
BearerTokenPolicy tokenPolicy = new(
new DefaultAzureCredential(),
"https://cognitiveservices.azure.com/.default");
ChatClient client = new(
model: "gpt-4.1-nano",
authenticationPolicy: tokenPolicy,
options: new OpenAIClientOptions() {
Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
}
);
ChatCompletion completion = client.CompleteChat("Tell me about the bitter lesson.'");
Console.WriteLine($"[ASSISTANT]: {completion.Content[0].Text}");
For more information about Azure OpenAI keyless authentication, see the "Get started with the Azure OpenAI security building block" QuickStart article.
Chat
Example of chat completions request to a reasoning model.
using OpenAI;
using OpenAI.Chat;
using System.ClientModel.Primitives;
#pragma warning disable OPENAI001 //currently required for token based authentication
BearerTokenPolicy tokenPolicy = new(
new DefaultAzureCredential(),
"https://cognitiveservices.azure.com/.default");
ChatClient client = new(
model: "o4-mini",
authenticationPolicy: tokenPolicy,
options: new OpenAIClientOptions()
{
Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
}
);
ChatCompletionOptions options = new ChatCompletionOptions
{
ReasoningEffortLevel = ChatReasoningEffortLevel.Low,
MaxOutputTokenCount = 100000
};
ChatCompletion completion = client.CompleteChat(
new DeveloperChatMessage("You are a helpful assistant"),
new UserChatMessage("Tell me about the bitter lesson")
);
Console.WriteLine($"[ASSISTANT]: {completion.Content[0].Text}");
Embeddings
using OpenAI;
using OpenAI.Embeddings;
using System.ClientModel;
string apiKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY")
?? throw new InvalidOperationException("AZURE_OPENAI_API_KEY environment variable is not set");
EmbeddingClient client = new(
"text-embedding-3-large",
credential: new ApiKeyCredential(apiKey),
options: new OpenAIClientOptions()
{
Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
}
);
string input = "This is a test";
OpenAIEmbedding embedding = client.GenerateEmbedding(input);
ReadOnlyMemory<float> vector = embedding.ToFloats();
Console.WriteLine($"Embeddings: [{string.Join(", ", vector.ToArray())}]");
Responses API
using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;
#pragma warning disable OPENAI001 //currently required for token based authentication
BearerTokenPolicy tokenPolicy = new(
new DefaultAzureCredential(),
"https://cognitiveservices.azure.com/.default");
OpenAIResponseClient client = new(
model: "o4-mini",
authenticationPolicy: tokenPolicy,
options: new OpenAIClientOptions()
{
Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
}
);
OpenAIResponse response = await client.CreateResponseAsync(
userInputText: "What's the optimal strategy to win at poker?",
new ResponseCreationOptions()
{
ReasoningOptions = new ResponseReasoningOptions()
{
ReasoningEffortLevel = ResponseReasoningEffortLevel.High,
},
});
Console.WriteLine(response.GetOutputText());
Streaming
using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;
#pragma warning disable OPENAI001 //currently required for token based authentication
BearerTokenPolicy tokenPolicy = new(
new DefaultAzureCredential(),
"https://cognitiveservices.azure.com/.default");
#pragma warning disable OPENAI001
OpenAIResponseClient client = new(
model: "o4-mini",
authenticationPolicy: tokenPolicy,
options: new OpenAIClientOptions()
{
Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
}
);
await foreach (StreamingResponseUpdate update
in client.CreateResponseStreamingAsync(
userInputText: "What's the optimal strategy to win at poker?",
new ResponseCreationOptions()
{
ReasoningOptions = new ResponseReasoningOptions()
{
ReasoningEffortLevel = ResponseReasoningEffortLevel.High,
},
}))
{
if (update is StreamingResponseOutputItemAddedUpdate itemUpdate
&& itemUpdate.Item is ReasoningResponseItem reasoningItem)
{
Console.WriteLine($"[Reasoning] ({reasoningItem.Status})");
}
else if (update is StreamingResponseOutputTextDeltaUpdate delta)
{
Console.Write(delta.Delta);
}
}
MCP Server
using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;
#pragma warning disable OPENAI001 //currently required for token based authentication
BearerTokenPolicy tokenPolicy = new(
new DefaultAzureCredential(),
"https://cognitiveservices.azure.com/.default");
OpenAIResponseClient client = new(
model: "o4-mini",
authenticationPolicy: tokenPolicy,
options: new OpenAIClientOptions()
{
Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
}
);
ResponseCreationOptions options = new();
options.Tools.Add(ResponseTool.CreateMcpTool(
serverLabel: "microsoft_learn",
serverUri: new Uri("https://learn.microsoft.com/api/mcp"),
toolCallApprovalPolicy: new McpToolCallApprovalPolicy(GlobalMcpToolCallApprovalPolicy.NeverRequireApproval)
));
OpenAIResponse response = (OpenAIResponse)client.CreateResponse([
ResponseItem.CreateUserMessageItem([
ResponseContentPart.CreateInputTextPart("Search for information about Azure Functions")
])
], options);
Console.WriteLine(response.GetOutputText());
Error handling
Error codes
| Status Code | Error Type |
|---|---|
| 400 | Bad Request Error |
| 401 | Authentication Error |
| 403 | Permission Denied Error |
| 404 | Not Found Error |
| 422 | Unprocessable Entity Error |
| 429 | Rate Limit Error |
| 500 | Internal Server Error |
| 503 | Service Unavailable |
| 504 | Gateway Timeout |
Retries
The client classes will automatically retry the following errors up to three more times using exponential backoff:
- 408 Request Timeout
- 429 Too Many Requests
- 500 Internal Server Error
- 502 Bad Gateway
- 503 Service Unavailable
- 504 Gateway Timeout
Source code | Package (pkg.go.dev) | REST API reference documentation | Package reference documentation
Azure OpenAI API version support
- v1 Generally Available (GA) API now allows access to both GA and Preview operations. To learn more, see the API version lifecycle guide.
Installation
Install the openai and azidentity modules with go get:
go get -u 'github.com/openai/openai-go@v2.1.1'
# optional
go get github.com/Azure/azure-sdk-for-go/sdk/azidentity
Authentication
The azidentity module is used for Microsoft Entra ID authentication with Azure OpenAI.
package main
import (
"context"
"fmt"
"github.com/Azure/azure-sdk-for-go/sdk/azidentity"
"github.com/openai/openai-go/v2"
"github.com/openai/openai-go/v2/azure"
"github.com/openai/openai-go/v2/option"
)
func main() {
// Create an Azure credential
tokenCredential, err := azidentity.NewDefaultAzureCredential(nil)
if err != nil {
panic(fmt.Sprintf("Failed to create credential: %v", err))
}
// Create a client with Azure OpenAI endpoint and token credential
client := openai.NewClient(
option.WithBaseURL("https://YOUR-RESOURCE_NAME.openai.azure.com/openai/v1/"),
azure.WithTokenCredential(tokenCredential),
)
// Make a completion request
chatCompletion, err := client.Chat.Completions.New(context.TODO(), openai.ChatCompletionNewParams{
Messages: []openai.ChatCompletionMessageParamUnion{
openai.UserMessage("Explain what the bitter lesson is?"),
},
Model: "o4-mini", // Use your deployed model name on Azure
})
if err != nil {
panic(err.Error())
}
fmt.Println(chatCompletion.Choices[0].Message.Content)
}
For more information about Azure OpenAI keyless authentication, see Use Azure OpenAI without keys.
Embeddings
package main
import (
"context"
"fmt"
"os"
"github.com/openai/openai-go/v2"
"github.com/openai/openai-go/v2/option"
)
func main() {
// Get API key from environment variable
apiKey := os.Getenv("AZURE_OPENAI_API_KEY")
if apiKey == "" {
panic("AZURE_OPENAI_API_KEY environment variable is not set")
}
// Create a client with Azure OpenAI endpoint and API key
client := openai.NewClient(
option.WithBaseURL("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/"),
option.WithAPIKey(apiKey),
)
ctx := context.Background()
text := "The attention mechanism revolutionized natural language processing"
// Make an embedding request
embedding, err := client.Embeddings.New(ctx, openai.EmbeddingNewParams{
Input: openai.EmbeddingNewParamsInputUnion{OfString: openai.String(text)},
Model: "text-embedding-3-small", // Use your deployed model name on Azure
})
if err != nil {
panic(err.Error())
}
// Print embedding information
fmt.Printf("Model: %s\n", embedding.Model)
fmt.Printf("Number of embeddings: %d\n", len(embedding.Data))
fmt.Printf("Embedding dimensions: %d\n", len(embedding.Data[0].Embedding))
fmt.Printf("Usage - Prompt tokens: %d, Total tokens: %d\n", embedding.Usage.PromptTokens, embedding.Usage.TotalTokens)
// Print first few values of the embedding vector
fmt.Printf("First 10 embedding values: %v\n", embedding.Data[0].Embedding[:10])
}
Responses
package main
import (
"context"
"github.com/Azure/azure-sdk-for-go/sdk/azidentity"
"github.com/openai/openai-go/v2"
"github.com/openai/openai-go/v2/azure"
"github.com/openai/openai-go/v2/option"
"github.com/openai/openai-go/v2/responses"
)
func main() {
// Create Azure token credential
tokenCredential, err := azidentity.NewDefaultAzureCredential(nil)
if err != nil {
panic(err)
}
// Create client with Azure endpoint and token credential
client := openai.NewClient(
option.WithBaseURL("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/"),
azure.WithTokenCredential(tokenCredential),
)
ctx := context.Background()
question := "Tell me about the attention is all you need paper"
resp, err := client.Responses.New(ctx, responses.ResponseNewParams{
Input: responses.ResponseNewParamsInputUnion{OfString: openai.String(question)},
Model: "o4-mini",
})
if err != nil {
panic(err)
}
println(resp.OutputText())
}
Source code |REST API reference documentation | Package reference documentation | Maven Central
Azure OpenAI API version support
- v1 Generally Available (GA) API now allows access to both GA and Preview operations. To learn more, see the API version lifecycle guide.
Installation
Gradle
implementation("com.openai:openai-java:4.0.1")
Maven
<dependency>
<groupId>com.openai</groupId>
<artifactId>openai-java</artifactId>
<version>4.0.1</version>
</dependency>
Authentication
Authentication with Microsoft Entra ID requires some initial setup:
Add the Azure Identity package:
<dependency>
<groupId>com.azure</groupId>
<artifactId>azure-identity</artifactId>
<version>1.18.0</version>
</dependency>
After setup, you can choose which type of credential from azure.identity to use. As an example, DefaultAzureCredential can be used to authenticate the client: Set the values of the client ID, tenant ID, and client secret of the Microsoft Entra ID application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET.
Authorization is easiest using DefaultAzureCredential. It finds the best credential to use in its running environment though use of DefaultAzureCredential is only recommended for testing, not for production.
Credential tokenCredential = BearerTokenCredential.create(
AuthenticationUtil.getBearerTokenSupplier(
new DefaultAzureCredentialBuilder().build(),
"https://cognitiveservices.azure.com/.default"));
OpenAIClient client = OpenAIOkHttpClient.builder()
.baseUrl("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/")
.credential(tokenCredential)
.build();
For more information about Azure OpenAI keyless authentication, see Use Azure OpenAI without keys.
Responses
package com.example;
import com.openai.client.OpenAIClient;
import com.openai.client.okhttp.OpenAIOkHttpClient;
import com.openai.models.ChatModel;
import com.openai.models.responses.Response;
import com.openai.models.responses.ResponseCreateParams;
import com.azure.core.credential.AzureKeyCredential;
public class OpenAITest {
public static void main(String[] args) {
// Get API key from environment variable for security
String apiKey = System.getenv("OPENAI_API_KEY");
String resourceName = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1";
String modelDeploymentName = "gpt-4.1"; //replace with you model deployment name
try {
OpenAIClient client = OpenAIOkHttpClient.builder()
.baseUrl(resourceName)
.apiKey(apiKey)
.build();
ResponseCreateParams params = ResponseCreateParams.builder()
.input("Tell me about the bitter lesson?")
.model(modelDeploymentName)
.build();
Response response = client.responses().create(params);
System.out.println("Response: " + response);
} catch (Exception e) {
System.err.println("Error: " + e.getMessage());
e.printStackTrace();
}
}
}
Source code | Package (npm) | Reference |
Azure OpenAI API version support
- v1 Generally Available (GA) API now allows access to both GA and Preview operations. To learn more, see the API version lifecycle guide.
Installation
npm install openai
Authentication
npm install @azure/identity
In order to authenticate the OpenAI client, however, we need to use the getBearerTokenProvider function from the @azure/identity package. This function creates a token provider that OpenAI uses internally to obtain tokens for each request. The token provider is created as follows:
import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";
const tokenProvider = getBearerTokenProvider(
new DefaultAzureCredential(),
'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
baseURL: "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
apiKey: tokenProvider
});
For more information about Azure OpenAI keyless authentication, see the "Get started with the Azure OpenAI security building block" QuickStart article.
Responses
responses.create
import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";
const tokenProvider = getBearerTokenProvider(
new DefaultAzureCredential(),
'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
apiKey: tokenProvider
});
const response = await client.responses.create({
model: 'gpt-4.1-nano', //model deployment name
instructions: 'You are a helpful AI agent',
input: 'Tell me about the bitter lesson?',
});
console.log(response.output_text);
Streaming
import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";
const tokenProvider = getBearerTokenProvider(
new DefaultAzureCredential(),
'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
apiKey: tokenProvider
});
const stream = await client.responses.create({
model: 'gpt-4.1-nano', // model deployment name
input: 'Provide a brief history of the attention is all you need paper.',
stream: true,
});
for await (const event of stream) {
if (event.type === 'response.output_text.delta' && event.delta) {
process.stdout.write(event.delta);
}
}
MCP Server
import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";
const tokenProvider = getBearerTokenProvider(
new DefaultAzureCredential(),
'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
apiKey: tokenProvider
});
const resp = await client.responses.create({
model: "gpt-5",
tools: [
{
type: "mcp",
server_label: "microsoft_learn",
server_description: "Microsoft Learn MCP server for searching and fetching Microsoft documentation.",
server_url: "https://learn.microsoft.com/api/mcp",
require_approval: "never",
},
],
input: "Search for information about Azure Functions",
});
console.log(resp.output_text);
Chat
chat.completions.create
import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";
const tokenProvider = getBearerTokenProvider(
new DefaultAzureCredential(),
'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
baseURL: "https://france-central-test-001.openai.azure.com/openai/v1/",
apiKey: tokenProvider
});
const messages = [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'Tell me about the attention is all you need paper' }
];
// Make the API request with top-level await
const result = await client.chat.completions.create({
messages,
model: 'gpt-4.1-nano', // model deployment name
max_tokens: 100
});
// Print the full response
console.log('Full response:', result);
// Print just the message content from the response
console.log('Response content:', result.choices[0].message.content);
Error handling
Error codes
| Status Code | Error Type |
|---|---|
| 400 | Bad Request Error |
| 401 | Authentication Error |
| 403 | Permission Denied Error |
| 404 | Not Found Error |
| 422 | Unprocessable Entity Error |
| 429 | Rate Limit Error |
| 500 | Internal Server Error |
| 503 | Service Unavailable |
| 504 | Gateway Timeout |
Retries
The following errors are automatically retired twice by default with a brief exponential backoff:
- Connection Errors
- 408 Request Timeout
- 429 Rate Limit
>=500 Internal Errors
Use maxRetries to set/disable the retry behavior:
// Configure the default for all requests:
const client = new OpenAI({
maxRetries: 0, // default is 2
});
// Or, configure per-request:
await client.chat.completions.create({ messages: [{ role: 'user', content: 'How can I get the name of the current day in Node.js?' }], model: '' }, {
maxRetries: 5,
});
Library source code | Package (PyPi) | Reference |
Note
This library is maintained by OpenAI. Refer to the release history to track the latest updates to the library.
Azure OpenAI API version support
- v1 Generally Available (GA) API now allows access to both GA and Preview operations. To learn more, see the API version lifecycle guide.
Installation
pip install openai
For the latest version:
pip install openai --upgrade
Authentication
Endpoints and API keys for your resources can be retrieved from the Azure portal or the AI Foundry:
- Sign in to Azure portal > select your resource > Resource Management > Keys and Endpoint
- Sign in to AI Foundry portal > select your resource
from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = OpenAI(
base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
api_key = token_provider
)
Responses API
responses.create()
from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = OpenAI(
base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
api_key=token_provider,
)
response = client.responses.create(
model="gpt-4.1-nano",
input= "This is a test"
)
print(response.model_dump_json(indent=2))
For more examples, see the Responses API documentation.
responses.create() with MCP server tool
from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = OpenAI(
base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
api_key=token_provider,
)
resp = client.responses.create(
model="gpt-5",
tools=[
{
"type": "mcp",
"server_label": "microsoft_learn",
"server_description": "Microsoft Learn MCP server for searching and fetching Microsoft documentation.",
"server_url": "https://learn.microsoft.com/api/mcp",
"require_approval": "never",
},
],
input="Search for information about Azure Functions",
)
print(resp.output_text)
For more examples, see the Responses API documentation.
Chat
chat.completions.create()
from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = OpenAI(
base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
api_key=token_provider,
)
completion = client.chat.completions.create(
model="gpt-4o", # Replace with your model deployment name.
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "When was Microsoft founded?"}
]
)
#print(completion.choices[0].message)
print(completion.model_dump_json(indent=2))
chat.completions.create() - streaming
from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = OpenAI(
base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
api_key=token_provider,
)
completion = client.chat.completions.create(
model="gpt-4o", # Replace with your model deployment name.
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "When was Microsoft founded?"}
],
stream=True
)
for chunk in completion:
if chunk.choices and chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end='',)
chat.completions.create() - image input
from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
token_provider = get_bearer_token_provider(
DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)
client = OpenAI(
base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
api_key=token_provider,
)
completion = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://raw.githubusercontent.com/MicrosoftDocs/azure-ai-docs/main/articles/ai-foundry/openai/media/how-to/generated-seattle.png",
}
},
],
}
],
max_tokens=300,
)
print(completion.model_dump_json(indent=2))
Embeddings
embeddings.create()
Embeddings currently do not support Microsoft Entra ID with Azure OpenAI and the v1 API.
Fine-tuning
Fine-tuning with Python how-to article
Error handling
# from openai import OpenAI
# client = OpenAI()
import openai
try:
client.fine_tuning.jobs.create(
model="gpt-4o",
training_file="file-test",
)
except openai.APIConnectionError as e:
print("The server could not be reached")
print(e.__cause__) # an underlying Exception, likely raised within httpx.
except openai.RateLimitError as e:
print("A 429 status code was received; we should back off a bit.")
except openai.APIStatusError as e:
print("Another non-200-range status code was received")
print(e.status_code)
print(e.response)
Error codes
| Status Code | Error Type |
|---|---|
| 400 | BadRequestError |
| 401 | AuthenticationError |
| 403 | PermissionDeniedError |
| 404 | NotFoundError |
| 422 | UnprocessableEntityError |
| 429 | RateLimitError |
| >=500 | InternalServerError |
| N/A | APIConnectionError |
Request IDs
To retrieve the ID of your request you can use the _request_id property which corresponds to the x-request-id response header.
print(completion._request_id)
print(legacy_completion._request_id)
Retries
The following errors are automatically retired twice by default with a brief exponential backoff:
- Connection Errors
- 408 Request Timeout
- 429 Rate Limit
>=500 Internal Errors
Use max_retries to set/disable the retry behavior:
# For all requests
from openai import OpenAI
client = OpenAI(
max_retries=0
)
# max retires for specific requests
client.with_options(max_retries=5).chat.completions.create(
messages=[
{
"role": "user",
"content": "When was Microsoft founded?",
}
],
model="gpt-4o",
)
Next steps
- To see what models are currently supported, check out the Azure OpenAI models page