다음을 통해 공유


Azure OpenAI 지원 프로그래밍 언어

소스 코드 | 패키지(NuGet)

Azure OpenAI API 버전 지원

  • 이제 v1 GA(일반 공급) API를 통해 GA 및 미리 보기 작업에 모두 액세스할 수 있습니다. 자세한 내용은 API 버전 수명 주기 가이드를 참조하세요.

설치

dotnet add package OpenAI

인증

안전하고 키가 없는 인증 방법은 Azure ID 라이브러리를 통해 Microsoft Entra ID(이전의 Azure Active Directory)를 사용하는 것입니다. 라이브러리를 사용하려면:

dotnet add package Azure.Identity

라이브러리에서 원하는 자격 증명 형식을 사용합니다. 예: DefaultAzureCredential

using Azure.Identity;
using OpenAI;
using OpenAI.Chat;
using System.ClientModel.Primitives;

#pragma warning disable OPENAI001

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

ChatClient client = new(
    model: "gpt-4.1-nano",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions() { 
    
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
   }
);

ChatCompletion completion = client.CompleteChat("Tell me about the bitter lesson.'");

Console.WriteLine($"[ASSISTANT]: {completion.Content[0].Text}");

Azure OpenAI 키 없는 인증에 대한 자세한 내용은 "Azure OpenAI 보안 구성 요소 시작" 빠른 시작 문서를 참조하세요.

채팅

추론 모델에 대한 채팅 완료 요청의 예입니다.

using OpenAI;
using OpenAI.Chat;
using System.ClientModel.Primitives;

#pragma warning disable OPENAI001 //currently required for token based authentication

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

ChatClient client = new(
    model: "o4-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {

        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);

ChatCompletionOptions options = new ChatCompletionOptions
{
    ReasoningEffortLevel = ChatReasoningEffortLevel.Low,
    MaxOutputTokenCount = 100000
};

ChatCompletion completion = client.CompleteChat(
         new DeveloperChatMessage("You are a helpful assistant"),
         new UserChatMessage("Tell me about the bitter lesson")
    );

Console.WriteLine($"[ASSISTANT]: {completion.Content[0].Text}");

포함

using OpenAI;
using OpenAI.Embeddings;
using System.ClientModel;

string apiKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY")
    ?? throw new InvalidOperationException("AZURE_OPENAI_API_KEY environment variable is not set");

EmbeddingClient client = new(
    "text-embedding-3-large",
    credential: new ApiKeyCredential(apiKey),
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);

string input = "This is a test";

OpenAIEmbedding embedding = client.GenerateEmbedding(input);
ReadOnlyMemory<float> vector = embedding.ToFloats();
Console.WriteLine($"Embeddings: [{string.Join(", ", vector.ToArray())}]");

응답 API

using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;

#pragma warning disable OPENAI001 //currently required for token based authentication

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

OpenAIResponseClient client = new(
    model: "o4-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);

OpenAIResponse response = await client.CreateResponseAsync(
    userInputText: "What's the optimal strategy to win at poker?",
    new ResponseCreationOptions()
    {
        ReasoningOptions = new ResponseReasoningOptions()
        {
            ReasoningEffortLevel = ResponseReasoningEffortLevel.High,
        },
    });

Console.WriteLine(response.GetOutputText());

스트리밍

using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;

#pragma warning disable OPENAI001 //currently required for token based authentication

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

#pragma warning disable OPENAI001

OpenAIResponseClient client = new(
    model: "o4-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);


await foreach (StreamingResponseUpdate update
    in client.CreateResponseStreamingAsync(
        userInputText: "What's the optimal strategy to win at poker?",
        new ResponseCreationOptions()
        {
            ReasoningOptions = new ResponseReasoningOptions()
            {
                ReasoningEffortLevel = ResponseReasoningEffortLevel.High,
            },
        }))
{
    if (update is StreamingResponseOutputItemAddedUpdate itemUpdate
        && itemUpdate.Item is ReasoningResponseItem reasoningItem)
    {
        Console.WriteLine($"[Reasoning] ({reasoningItem.Status})");
    }
    else if (update is StreamingResponseOutputTextDeltaUpdate delta)
    {
        Console.Write(delta.Delta);
    }
}

MCP 서버

using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;

#pragma warning disable OPENAI001 //currently required for token based authentication

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

OpenAIResponseClient client = new(
    model: "o4-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);

ResponseCreationOptions options = new();
options.Tools.Add(ResponseTool.CreateMcpTool(
    serverLabel: "microsoft_learn",
    serverUri: new Uri("https://learn.microsoft.com/api/mcp"),
    toolCallApprovalPolicy: new McpToolCallApprovalPolicy(GlobalMcpToolCallApprovalPolicy.NeverRequireApproval)
));

OpenAIResponse response = (OpenAIResponse)client.CreateResponse([
    ResponseItem.CreateUserMessageItem([
        ResponseContentPart.CreateInputTextPart("Search for information about Azure Functions")
    ])
], options);

Console.WriteLine(response.GetOutputText());

오류 처리

오류 코드

상태 코드 오류 유형
400 Bad Request Error
401 Authentication Error
403 Permission Denied Error
404 Not Found Error
422 Unprocessable Entity Error
429 Rate Limit Error
500 Internal Server Error
503 Service Unavailable
504 Gateway Timeout

다시 시도

클라이언트 클래스는 지수 백오프를 사용하여 다음 오류를 최대 세 번 더 자동으로 다시 시도합니다.

  • 408 요청 시간 초과
  • 429 요청이 너무 많음
  • 500 내부 서버 오류
  • 502 잘못된 게이트웨이
  • 503 서비스를 사용할 수 없음
  • 504 게이트웨이 시간 초과

소스 코드 | 패키지(pkg.go.dev) | REST API 참조 설명서 | 패키지 참조 설명서

Azure OpenAI API 버전 지원

  • 이제 v1 GA(일반 공급) API를 통해 GA 및 미리 보기 작업에 모두 액세스할 수 있습니다. 자세한 내용은 API 버전 수명 주기 가이드를 참조하세요.

설치

go get을 사용하여 openaiazidentity 모듈을 설치합니다.

go get -u 'github.com/openai/openai-go@v2.1.1'

# optional
go get github.com/Azure/azure-sdk-for-go/sdk/azidentity

인증

azidentity 모듈은 Azure OpenAI를 사용한 Microsoft Entra ID 인증에 사용됩니다.

package main

import (
	"context"
	"fmt"

	"github.com/Azure/azure-sdk-for-go/sdk/azidentity"
	"github.com/openai/openai-go/v2"
	"github.com/openai/openai-go/v2/azure"
	"github.com/openai/openai-go/v2/option"
)

func main() {
	// Create an Azure credential
	tokenCredential, err := azidentity.NewDefaultAzureCredential(nil)
	if err != nil {
		panic(fmt.Sprintf("Failed to create credential: %v", err))
	}

	// Create a client with Azure OpenAI endpoint and token credential
	client := openai.NewClient(
		option.WithBaseURL("https://YOUR-RESOURCE_NAME.openai.azure.com/openai/v1/"),
		azure.WithTokenCredential(tokenCredential),
	)

	// Make a completion request
	chatCompletion, err := client.Chat.Completions.New(context.TODO(), openai.ChatCompletionNewParams{
		Messages: []openai.ChatCompletionMessageParamUnion{
			openai.UserMessage("Explain what the bitter lesson is?"),
		},
		Model: "o4-mini", // Use your deployed model name on Azure
	})
	if err != nil {
		panic(err.Error())
	}

	fmt.Println(chatCompletion.Choices[0].Message.Content)
}

Azure OpenAI 키 없는 인증에 대한 자세한 내용은 키 없이 Azure OpenAI 사용을 참조하세요.

포함

package main

import (
	"context"
	"fmt"
	"os"

	"github.com/openai/openai-go/v2"
	"github.com/openai/openai-go/v2/option"
)

func main() {
	// Get API key from environment variable
	apiKey := os.Getenv("AZURE_OPENAI_API_KEY")
	if apiKey == "" {
		panic("AZURE_OPENAI_API_KEY environment variable is not set")
	}

	// Create a client with Azure OpenAI endpoint and API key
	client := openai.NewClient(
		option.WithBaseURL("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/"),
		option.WithAPIKey(apiKey),
	)

	ctx := context.Background()
	text := "The attention mechanism revolutionized natural language processing"

	// Make an embedding request
	embedding, err := client.Embeddings.New(ctx, openai.EmbeddingNewParams{
		Input: openai.EmbeddingNewParamsInputUnion{OfString: openai.String(text)},
		Model: "text-embedding-3-small", // Use your deployed model name on Azure
	})
	if err != nil {
		panic(err.Error())
	}

	// Print embedding information
	fmt.Printf("Model: %s\n", embedding.Model)
	fmt.Printf("Number of embeddings: %d\n", len(embedding.Data))
	fmt.Printf("Embedding dimensions: %d\n", len(embedding.Data[0].Embedding))
	fmt.Printf("Usage - Prompt tokens: %d, Total tokens: %d\n", embedding.Usage.PromptTokens, embedding.Usage.TotalTokens)
	
	// Print first few values of the embedding vector
	fmt.Printf("First 10 embedding values: %v\n", embedding.Data[0].Embedding[:10])
}

Responses

package main

import (
	"context"

	"github.com/Azure/azure-sdk-for-go/sdk/azidentity"
	"github.com/openai/openai-go/v2"
	"github.com/openai/openai-go/v2/azure"
	"github.com/openai/openai-go/v2/option"
	"github.com/openai/openai-go/v2/responses"
)

func main() {
	// Create Azure token credential
	tokenCredential, err := azidentity.NewDefaultAzureCredential(nil)
	if err != nil {
		panic(err)
	}

	// Create client with Azure endpoint and token credential
	client := openai.NewClient(
		option.WithBaseURL("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/"),
		azure.WithTokenCredential(tokenCredential),
	)

	ctx := context.Background()
	question := "Tell me about the attention is all you need paper"

	resp, err := client.Responses.New(ctx, responses.ResponseNewParams{
		Input: responses.ResponseNewParamsInputUnion{OfString: openai.String(question)},
		Model: "o4-mini",
	})

	if err != nil {
		panic(err)
	}

	println(resp.OutputText())
}

소스 코드 |REST API 참조 설명서 | 패키지 참조 설명서 | Maven Central

Azure OpenAI API 버전 지원

  • 이제 v1 GA(일반 공급) API를 통해 GA 및 미리 보기 작업에 모두 액세스할 수 있습니다. 자세한 내용은 API 버전 수명 주기 가이드를 참조하세요.

설치

Gradle

implementation("com.openai:openai-java:4.0.1")

메이븐

<dependency>
  <groupId>com.openai</groupId>
  <artifactId>openai-java</artifactId>
  <version>4.0.1</version>
</dependency>

인증

Microsoft Entra ID를 사용하여 인증하려면 몇 가지 초기 설정이 필요합니다.

Azure ID 패키지 추가:

<dependency>
    <groupId>com.azure</groupId>
    <artifactId>azure-identity</artifactId>
    <version>1.18.0</version>
</dependency>

설치 후 사용할 azure.identity에서 자격 증명 유형을 선택할 수 있습니다. 예를 들어 DefaultAzureCredential은 클라이언트를 인증하는 데 사용할 수 있습니다. Microsoft Entra ID 애플리케이션의 클라이언트 ID, 테넌트 ID 및 클라이언트 비밀 값을 환경 변수: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET으로 설정합니다.

권한 부여는 .를 사용하는 것이 가장 쉽습니다 DefaultAzureCredential. DefaultAzureCredential은 테스트용으로만 권장되고 프로덕션용으로는 권장되지 않지만 실행 환경에서 사용할 수 있는 최상의 자격 증명을 찾습니다.

Credential tokenCredential = BearerTokenCredential.create(
        AuthenticationUtil.getBearerTokenSupplier(
                new DefaultAzureCredentialBuilder().build(),
                "https://cognitiveservices.azure.com/.default"));
OpenAIClient client = OpenAIOkHttpClient.builder()
        .baseUrl("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/")
        .credential(tokenCredential)
        .build();

Azure OpenAI 키 없는 인증에 대한 자세한 내용은 키 없이 Azure OpenAI 사용을 참조하세요.

Responses

package com.example;

import com.openai.client.OpenAIClient;
import com.openai.client.okhttp.OpenAIOkHttpClient;
import com.openai.models.ChatModel;
import com.openai.models.responses.Response;
import com.openai.models.responses.ResponseCreateParams;
import com.azure.core.credential.AzureKeyCredential;

public class OpenAITest {
    public static void main(String[] args) {
        // Get API key from environment variable for security
        String apiKey = System.getenv("OPENAI_API_KEY");
        String resourceName = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1";
        String modelDeploymentName = "gpt-4.1"; //replace with you model deployment name

        try {
            OpenAIClient client = OpenAIOkHttpClient.builder()
                    .baseUrl(resourceName)
                    .apiKey(apiKey)
                    .build();

            ResponseCreateParams params = ResponseCreateParams.builder()
                    .input("Tell me about the bitter lesson?")
                    .model(modelDeploymentName)
                    .build();

            Response response = client.responses().create(params);
            
            System.out.println("Response: " + response);
        } catch (Exception e) {
            System.err.println("Error: " + e.getMessage());
            e.printStackTrace();
        }
    }
}

소스 코드 | 패키지(npm) | 참조 |

Azure OpenAI API 버전 지원

  • 이제 v1 GA(일반 공급) API를 통해 GA 및 미리 보기 작업에 모두 액세스할 수 있습니다. 자세한 내용은 API 버전 수명 주기 가이드를 참조하세요.

설치

npm install openai

인증

npm install @azure/identity

그러나 OpenAI 클라이언트를 인증하려면 getBearerTokenProvider 패키지의 @azure/identity 함수를 사용해야 합니다. 이 함수는 OpenAI가 각 요청에 대한 토큰을 가져오기 위해 내부적으로 사용하는 토큰 공급자를 만듭니다. 토큰 공급자는 다음과 같이 만들어집니다.

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

Azure OpenAI 키 없는 인증에 대한 자세한 내용은 "Azure OpenAI 보안 구성 요소 시작" 빠른 시작 문서를 참조하세요.

Responses

responses.create

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

const response = await client.responses.create({
  model: 'gpt-4.1-nano', //model deployment name
  instructions: 'You are a helpful AI agent',
  input: 'Tell me about the bitter lesson?',
});

console.log(response.output_text);

스트리밍

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

const stream = await client.responses.create({
  model: 'gpt-4.1-nano', // model deployment name
  input: 'Provide a brief history of the attention is all you need paper.',
  stream: true,
});

for await (const event of stream) {
  if (event.type === 'response.output_text.delta' && event.delta) {
    process.stdout.write(event.delta);
  }
}

MCP 서버

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

const resp = await client.responses.create({
  model: "gpt-5",
  tools: [
    {
      type: "mcp",
      server_label: "microsoft_learn",
      server_description: "Microsoft Learn MCP server for searching and fetching Microsoft documentation.",
      server_url: "https://learn.microsoft.com/api/mcp",
      require_approval: "never",
    },
  ],
  input: "Search for information about Azure Functions",
});

console.log(resp.output_text);

채팅

chat.completions.create

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://france-central-test-001.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

const messages = [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'Tell me about the attention is all you need paper' }
];

// Make the API request with top-level await
const result = await client.chat.completions.create({ 
    messages, 
    model: 'gpt-4.1-nano', // model deployment name
    max_tokens: 100 
});

// Print the full response
console.log('Full response:', result);

// Print just the message content from the response
console.log('Response content:', result.choices[0].message.content);

오류 처리

오류 코드

상태 코드 오류 유형
400 Bad Request Error
401 Authentication Error
403 Permission Denied Error
404 Not Found Error
422 Unprocessable Entity Error
429 Rate Limit Error
500 Internal Server Error
503 Service Unavailable
504 Gateway Timeout

다시 시도

다음 오류는 간단한 지수 백오프와 함께 기본적으로 두 번 자동으로 사용 중지됩니다.

  • 연결 오류
  • 408 요청 시간 초과
  • 429 속도 제한
  • >=500 내부 오류

maxRetries를 사용하여 다시 시도 동작을 설정/비활성화:

// Configure the default for all requests:
const client = new OpenAI({
  maxRetries: 0, // default is 2
});

// Or, configure per-request:
await client.chat.completions.create({ messages: [{ role: 'user', content: 'How can I get the name of the current day in Node.js?' }], model: '' }, {
  maxRetries: 5,
});

라이브러리 소스 코드 | 패키지(PyPi) | 참조 |

비고

이 라이브러리는 OpenAI에서 유지 관리합니다. 라이브러리의 최신 업데이트를 추적하려면 릴리스 기록을 참조하세요.

Azure OpenAI API 버전 지원

  • 이제 v1 GA(일반 공급) API를 통해 GA 및 미리 보기 작업에 모두 액세스할 수 있습니다. 자세한 내용은 API 버전 수명 주기 가이드를 참조하세요.

설치

pip install openai

최신 버전의 경우:

pip install openai --upgrade

인증

리소스에 대한 엔드포인트 및 API 키는 Azure Portal 또는 AI Foundry에서 검색할 수 있습니다.

  • Azure> Portal에 로그인하여 리소스 >리소스 관리>키 및 엔드포인트 선택
  • AI Foundry 포털>에 로그인하여 리소스 선택
from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key = token_provider  
)

응답 API

responses.create()

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

response = client.responses.create(
    model="gpt-4.1-nano",
    input= "This is a test" 
)

print(response.model_dump_json(indent=2)) 

자세한 예제는 응답 API 설명서를 참조하세요.

responses.create()를 MCP 서버 도구와 함께 사용

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

resp = client.responses.create(
    model="gpt-5",
    tools=[
        {
            "type": "mcp",
            "server_label": "microsoft_learn",
            "server_description": "Microsoft Learn MCP server for searching and fetching Microsoft documentation.",
            "server_url": "https://learn.microsoft.com/api/mcp",
            "require_approval": "never",
        },
    ],
    input="Search for information about Azure Functions",
)

print(resp.output_text)

자세한 예제는 응답 API 설명서를 참조하세요.

채팅

chat.completions.create()

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

completion = client.chat.completions.create(
  model="gpt-4o", # Replace with your model deployment name.
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "When was Microsoft founded?"}
  ]
)

#print(completion.choices[0].message)
print(completion.model_dump_json(indent=2))

chat.completions.create() - 스트리밍

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

completion = client.chat.completions.create(
  model="gpt-4o", # Replace with your model deployment name.
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "When was Microsoft founded?"}
  ],
  stream=True
)

for chunk in completion:
    if chunk.choices and chunk.choices[0].delta.content is not None:
        print(chunk.choices[0].delta.content, end='',)

chat.completions.create() - 이미지 입력

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

completion = client.chat.completions.create(
    model="gpt-4o",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What's in this image?"},
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://raw.githubusercontent.com/MicrosoftDocs/azure-ai-docs/main/articles/ai-foundry/openai/media/how-to/generated-seattle.png",
                    }
                },
            ],
        }
    ],
    max_tokens=300,
)

print(completion.model_dump_json(indent=2))

포함

임베딩 생성()

임베딩은 현재 Azure OpenAI 및 v1 API에서 Microsoft Entra ID를 지원하지 않습니다.

미세 조정

Python 사용법 기사로 미세 조정

오류 처리

# from openai import OpenAI
# client = OpenAI()

import openai

try:
    client.fine_tuning.jobs.create(
        model="gpt-4o",
        training_file="file-test",
    )
except openai.APIConnectionError as e:
    print("The server could not be reached")
    print(e.__cause__)  # an underlying Exception, likely raised within httpx.
except openai.RateLimitError as e:
    print("A 429 status code was received; we should back off a bit.")
except openai.APIStatusError as e:
    print("Another non-200-range status code was received")
    print(e.status_code)
    print(e.response)

오류 코드

상태 코드 오류 유형
400 BadRequestError
401 AuthenticationError
403 PermissionDeniedError
404 NotFoundError
422 UnprocessableEntityError
429 RateLimitError
>=500 InternalServerError
해당 없음(N/A) APIConnectionError

요청 ID

요청의 ID를 검색하려면 _request_id 응답 헤더에 해당하는 x-request-id 속성을 사용할 수 있습니다.

print(completion._request_id) 
print(legacy_completion._request_id)

다시 시도

다음 오류는 간단한 지수 백오프와 함께 기본적으로 두 번 자동으로 사용 중지됩니다.

  • 연결 오류
  • 408 요청 시간 초과
  • 429 속도 제한
  • >=500 내부 오류

max_retries를 사용하여 다시 시도 동작을 설정/비활성화:

# For all requests

from openai import OpenAI
client = OpenAI(
      max_retries=0
)
# max retires for specific requests

client.with_options(max_retries=5).chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "When was Microsoft founded?",
        }
    ],
    model="gpt-4o",
)

다음 단계