Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Built-in evaluators are great out of the box to start evaluating your application's generations. However you might want to build your own code-based or prompt-based evaluator to cater to your specific evaluation needs.
Code-based evaluators
Sometimes a large language model isn't needed for certain evaluation metrics. This is when code-based evaluators can give you the flexibility to define metrics based on functions or callable class. You can build your own code-based evaluator, for example, by creating a simple Python class that calculates the length of an answer in answer_length.py
under directory answer_len/
:
Code-based evaluator example: Answer length
class AnswerLengthEvaluator:
def __init__(self):
pass
# A class is made a callable my implementing the special method __call__
def __call__(self, *, answer: str, **kwargs):
return {"answer_length": len(answer)}
Then run the evaluator on a row of data by importing a callable class:
from answer_len.answer_length import AnswerLengthEvaluator
answer_length_evaluator = AnswerLengthEvaluator()
answer_length = answer_length_evaluator(answer="What is the speed of light?")
Code-based evaluator output: Answer length
{"answer_length":27}
Prompt-based evaluators
To build your own prompt-based large language model evaluator or AI-assisted annotator, you can create a custom evaluator based on a Prompty file. Prompty is a file with .prompty
extension for developing prompt template. The Prompty asset is a markdown file with a modified front matter. The front matter is in YAML format that contains many metadata fields that define model configuration and expected inputs of the Prompty. Let's create a custom evaluator FriendlinessEvaluator
to measure friendliness of a response.
Prompt-based evaluator example: Friendliness evaluator
First, create a friendliness.prompty
file that describes the definition of the friendliness metric and its grading rubric:
---
name: Friendliness Evaluator
description: Friendliness Evaluator to measure warmth and approachability of answers.
model:
api: chat
configuration:
type: azure_openai
azure_endpoint: ${env:AZURE_OPENAI_ENDPOINT}
azure_deployment: gpt-4o-mini
parameters:
model:
temperature: 0.1
inputs:
response:
type: string
outputs:
score:
type: int
explanation:
type: string
---
system:
Friendliness assesses the warmth and approachability of the answer. Rate the friendliness of the response between one to five stars using the following scale:
One star: the answer is unfriendly or hostile
Two stars: the answer is mostly unfriendly
Three stars: the answer is neutral
Four stars: the answer is mostly friendly
Five stars: the answer is very friendly
Please assign a rating between 1 and 5 based on the tone and demeanor of the response.
**Example 1**
generated_query: I just don't feel like helping you! Your questions are getting very annoying.
output:
{"score": 1, "reason": "The response is not warm and is resisting to be providing helpful information."}
**Example 2**
generated_query: I'm sorry this watch is not working for you. Very happy to assist you with a replacement.
output:
{"score": 5, "reason": "The response is warm and empathetic, offering a resolution with care."}
**Here the actual conversation to be scored:**
generated_query: {{response}}
output:
Then create a class FriendlinessEvaluator
to load the Prompty file and process the outputs with json format:
import os
import json
import sys
from promptflow.client import load_flow
class FriendlinessEvaluator:
def __init__(self, model_config):
current_dir = os.path.dirname(__file__)
prompty_path = os.path.join(current_dir, "friendliness.prompty")
self._flow = load_flow(source=prompty_path, model={"configuration": model_config})
def __call__(self, *, response: str, **kwargs):
llm_response = self._flow(response=response)
try:
response = json.loads(llm_response)
except Exception as ex:
response = llm_response
return response
Now, you can create your own Prompty-based evaluator and run it on a row of data:
from friendliness.friend import FriendlinessEvaluator
friendliness_eval = FriendlinessEvaluator(model_config)
friendliness_score = friendliness_eval(response="I will not apologize for my behavior!")
Prompt-based evaluator output: Friendliness evaluator
{
'score': 1,
'reason': 'The response is hostile and unapologetic, lacking warmth or approachability.'
}