Compartilhar via


Início Rápido: implantar um cluster do AKS (Serviço de Kubernetes do Azure) usando a CLI do Azure

Implantar no Azure

O AKS (Serviço de Kubernetes do Azure) é um serviço de Kubernetes gerenciado que permite implantar e gerenciar clusters rapidamente. Neste guia de início rápido, você aprende a:

  • Implantar um cluster do AKS usando a CLI do Azure.
  • Executar um exemplo de aplicativo de múltiplos contêineres com um grupo de microsserviços e interfaces web para simular um cenário de varejo.

Note

Este artigo inclui etapas para implantar um cluster com configurações padrão somente para fins de avaliação. Antes de implantar um cluster pronto para produção, recomendamos que você se familiarize com nossa arquitetura de referência de linha de base para considerar como ele se alinha aos seus requisitos de negócios.

Antes de começar

Este guia de início rápido pressupõe uma compreensão básica dos conceitos do Kubernetes. Para obter mais informações, confira Principais conceitos do Kubernetes para o AKS (Serviço de Kubernetes do Azure).

  • Se você ainda não tiver uma conta do Azure, crie uma conta gratuita antes de começar.

Definir variáveis de ambiente

Defina as variáveis de ambiente a seguir para uso ao longo deste início rápido.

export RANDOM_ID="$(openssl rand -hex 3)"
export MY_RESOURCE_GROUP_NAME="myAKSResourceGroup$RANDOM_ID"
export REGION="westus"
export MY_AKS_CLUSTER_NAME="myAKSCluster$RANDOM_ID"
export MY_DNS_LABEL="mydnslabel$RANDOM_ID"

O RANDOM_ID valor da variável é um valor alfanumérico de seis caracteres acrescentado ao grupo de recursos e ao nome do cluster para que os nomes sejam exclusivos. Use o echo comando para exibir valores variáveis como echo $RANDOM_ID.

Criar um grupo de recursos

Um grupo de recursos do Azure é um grupo lógico no qual os recursos do Azure são implantados e gerenciados. Ao criar um grupo de recursos, você é solicitado a especificar um local. Essa é a localização na qual os metadados do grupo de recursos são armazenados e na qual os recursos são executados no Azure, caso você não especifique outra região durante a criação de recursos.

Crie um grupo de recursos usando o comando az group create.

az group create --name $MY_RESOURCE_GROUP_NAME --___location $REGION

O resultado se parece com o exemplo a seguir.

{
  "id": "/subscriptions/aaaa0a0a-bb1b-cc2c-dd3d-eeeeee4e4e4e/resourceGroups/myAKSResourceGroup<randomIDValue>",
  "___location": "westus",
  "managedBy": null,
  "name": "myAKSResourceGroup<randomIDValue>",
  "properties": {
    "provisioningState": "Succeeded"
  },
  "tags": null,
  "type": "Microsoft.Resources/resourceGroups"
}

Criar um cluster AKS

Crie um cluster do AKS usando o comando az aks create. O exemplo a seguir cria um cluster com um nó e habilita uma identidade gerenciada atribuída pelo sistema.

az aks create \
  --resource-group $MY_RESOURCE_GROUP_NAME \
  --name $MY_AKS_CLUSTER_NAME \
  --node-count 1 \
  --generate-ssh-keys

Note

Quando você cria um novo cluster, o AKS cria automaticamente um segundo grupo de recursos para armazenar os recursos do AKS. Para obter mais informações, confira Por que dois grupos de recursos são criados com o AKS?

Conectar-se ao cluster

Para gerenciar um cluster do Kubernetes, use o cliente de linha de comando do Kubernetes, kubectl. kubectl já está instalado se você usa o Azure Cloud Shell. Para instalar o kubectl localmente, use o comando az aks install-cli.

  1. Configure o kubectl para se conectar ao cluster do Kubernetes usando o comando az aks get-credentials. Este comando baixa as credenciais e configura a CLI do Kubernetes para usá-las.

    az aks get-credentials --resource-group $MY_RESOURCE_GROUP_NAME --name $MY_AKS_CLUSTER_NAME
    
  2. Verifique a conexão com o cluster usando o comando kubectl get. Esse comando retorna uma lista dos nós de cluster.

    kubectl get nodes
    

Implantar o aplicativo

A fim de implantar o aplicativo, use um arquivo de manifesto para criar todos os objetos necessários para executar o Aplicativo da Loja do AKS. Um arquivo de manifesto do Kubernetes define o estado desejado de um cluster, como quais imagens de contêiner executar. O manifesto inclui as seguintes implantações e serviços do Kubernetes:

Captura de tela da arquitetura de exemplo da Azure Store.

  • Store front: aplicativo Web para os clientes exibirem produtos e realizarem pedidos.
  • Serviço de produto: mostra informações do produto.
  • Serviço de pedido: faz pedidos.
  • RabbitMQ: Fila de mensagens para uma fila de pedidos.

Note

Não recomendamos a execução de contêineres com estado, como RabbitMQ, sem armazenamento persistente para produção. Usamos aqui para simplificar, mas recomendamos o uso de serviços gerenciados, como o Azure CosmosDB ou o Barramento de Serviço do Azure.

  1. Crie um arquivo chamado aks-store-quickstart.yaml e copie no manifesto a seguir.

    apiVersion: apps/v1
    kind: StatefulSet
    metadata:
      name: rabbitmq
    spec:
      serviceName: rabbitmq
      replicas: 1
      selector:
        matchLabels:
          app: rabbitmq
      template:
        metadata:
          labels:
            app: rabbitmq
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: rabbitmq
            image: mcr.microsoft.com/mirror/docker/library/rabbitmq:3.10-management-alpine
            ports:
            - containerPort: 5672
              name: rabbitmq-amqp
            - containerPort: 15672
              name: rabbitmq-http
            env:
            - name: RABBITMQ_DEFAULT_USER
              value: "username"
            - name: RABBITMQ_DEFAULT_PASS
              value: "password"
            resources:
              requests:
                cpu: 10m
                memory: 128Mi
              limits:
                cpu: 250m
                memory: 256Mi
            volumeMounts:
            - name: rabbitmq-enabled-plugins
              mountPath: /etc/rabbitmq/enabled_plugins
              subPath: enabled_plugins
          volumes:
          - name: rabbitmq-enabled-plugins
            configMap:
              name: rabbitmq-enabled-plugins
              items:
              - key: rabbitmq_enabled_plugins
                path: enabled_plugins
    ---
    apiVersion: v1
    data:
      rabbitmq_enabled_plugins: |
        [rabbitmq_management,rabbitmq_prometheus,rabbitmq_amqp1_0].
    kind: ConfigMap
    metadata:
      name: rabbitmq-enabled-plugins
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: rabbitmq
    spec:
      selector:
        app: rabbitmq
      ports:
        - name: rabbitmq-amqp
          port: 5672
          targetPort: 5672
        - name: rabbitmq-http
          port: 15672
          targetPort: 15672
      type: ClusterIP
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: order-service
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: order-service
      template:
        metadata:
          labels:
            app: order-service
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: order-service
            image: ghcr.io/azure-samples/aks-store-demo/order-service:latest
            ports:
            - containerPort: 3000
            env:
            - name: ORDER_QUEUE_HOSTNAME
              value: "rabbitmq"
            - name: ORDER_QUEUE_PORT
              value: "5672"
            - name: ORDER_QUEUE_USERNAME
              value: "username"
            - name: ORDER_QUEUE_PASSWORD
              value: "password"
            - name: ORDER_QUEUE_NAME
              value: "orders"
            - name: FASTIFY_ADDRESS
              value: "0.0.0.0"
            resources:
              requests:
                cpu: 1m
                memory: 50Mi
              limits:
                cpu: 75m
                memory: 128Mi
            startupProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 5
              initialDelaySeconds: 20
              periodSeconds: 10
            readinessProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
          initContainers:
          - name: wait-for-rabbitmq
            image: busybox
            command: ['sh', '-c', 'until nc -zv rabbitmq 5672; do echo waiting for rabbitmq; sleep 2; done;']
            resources:
              requests:
                cpu: 1m
                memory: 50Mi
              limits:
                cpu: 75m
                memory: 128Mi
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: order-service
    spec:
      type: ClusterIP
      ports:
      - name: http
        port: 3000
        targetPort: 3000
      selector:
        app: order-service
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: product-service
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: product-service
      template:
        metadata:
          labels:
            app: product-service
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: product-service
            image: ghcr.io/azure-samples/aks-store-demo/product-service:latest
            ports:
            - containerPort: 3002
            env:
            - name: AI_SERVICE_URL
              value: "http://ai-service:5001/"
            resources:
              requests:
                cpu: 1m
                memory: 1Mi
              limits:
                cpu: 2m
                memory: 20Mi
            readinessProbe:
              httpGet:
                path: /health
                port: 3002
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /health
                port: 3002
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: product-service
    spec:
      type: ClusterIP
      ports:
      - name: http
        port: 3002
        targetPort: 3002
      selector:
        app: product-service
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: store-front
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: store-front
      template:
        metadata:
          labels:
            app: store-front
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: store-front
            image: ghcr.io/azure-samples/aks-store-demo/store-front:latest
            ports:
            - containerPort: 8080
              name: store-front
            env:
            - name: VUE_APP_ORDER_SERVICE_URL
              value: "http://order-service:3000/"
            - name: VUE_APP_PRODUCT_SERVICE_URL
              value: "http://product-service:3002/"
            resources:
              requests:
                cpu: 1m
                memory: 200Mi
              limits:
                cpu: 1000m
                memory: 512Mi
            startupProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 3
              initialDelaySeconds: 5
              periodSeconds: 5
            readinessProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 3
            livenessProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: store-front
    spec:
      ports:
      - port: 80
        targetPort: 8080
      selector:
        app: store-front
      type: LoadBalancer
    

    Para obter um detalhamento dos arquivos de manifesto YAML, confira Implantações e manifestos YAML.

    Se você criar e salvar o arquivo YAML localmente, poderá carregar o arquivo de manifesto no diretório padrão no Cloud Shell selecionando o botão Carregar/Baixar arquivos e selecionando o arquivo em seu sistema de arquivos local.

  2. Implante o aplicativo usando o comando kubectl apply e especifique o nome do manifesto YAML.

    kubectl apply -f aks-store-quickstart.yaml
    

Testar o aplicativo

Você pode validar se o aplicativo está em execução visitando o endereço IP público ou a URL do aplicativo.

Obtenha a URL do aplicativo usando os seguintes comandos:

runtime="5 minutes"
endtime=$(date -ud "$runtime" +%s)
while [[ $(date -u +%s) -le $endtime ]]
do
   STATUS=$(kubectl get pods -l app=store-front -o 'jsonpath={..status.conditions[?(@.type=="Ready")].status}')
   echo $STATUS
   if [ "$STATUS" == 'True' ]
   then
      export IP_ADDRESS=$(kubectl get service store-front --output 'jsonpath={..status.loadBalancer.ingress[0].ip}')
      echo "Service IP Address: $IP_ADDRESS"
      break
   else
      sleep 10
   fi
done
curl $IP_ADDRESS

Results:

<!doctype html>
<html lang="">
   <head>
      <meta charset="utf-8">
      <meta http-equiv="X-UA-Compatible" content="IE=edge">
      <meta name="viewport" content="width=device-width,initial-scale=1">
      <link rel="icon" href="/favicon.ico">
      <title>store-front</title>
      <script defer="defer" src="/js/chunk-vendors.df69ae47.js"></script>
      <script defer="defer" src="/js/app.7e8cfbb2.js"></script>
      <link href="/css/app.a5dc49f6.css" rel="stylesheet">
   </head>
   <body>
      <div id="app"></div>
   </body>
</html>
echo "You can now visit your web server at $IP_ADDRESS"

Para exibir o site do aplicativo, abra um navegador e insira o endereço IP. A página se parece com o exemplo a seguir.

Captura de tela do aplicativo de exemplo do AKS Store.

Excluir o cluster

Se você não planeja passar pelo tutorial do AKS, limpe recursos desnecessários para evitar encargos de cobrança do Azure. Você pode remover o grupo de recursos, o serviço de contêiner e todos os recursos relacionados usando o comando az group delete .

az group delete --name $MY_RESOURCE_GROUP_NAME

O cluster do AKS foi criado com uma identidade gerenciada atribuída pelo sistema, que é a opção de identidade padrão usada neste início rápido. A plataforma gerencia essa identidade para que você não precise removê-la manualmente.

Next steps

Neste início rápido, você implantou um cluster do Kubernetes e, em seguida, implantou um aplicativo simples de vários contêineres nele. Esse aplicativo de exemplo é apenas para fins de demonstração e não representa todas as melhores práticas para aplicativos do Kubernetes. Para obter diretrizes sobre como criar soluções completas com o AKS para produção, consulte as diretrizes da solução do AKS.

Para saber mais sobre o AKS e fazer um exemplo completo de código para implantação, continue para o tutorial do cluster do Kubernetes.